Structural equation models with a binary outcome using STATA and Mplus

Richard Woodman

Centre for Epidemiology and Biostatistics

Flinders University

- Structural equation modelling (SEM) provides a framework for assessing likely causal pathways
- Specific research question: Is Homocysteine (HCY) an independent risk factor for CAD or is it merely a marker of increased risk?
- Which software offers most flexibility for SEM analysis with binary outcomes?

Study dataset

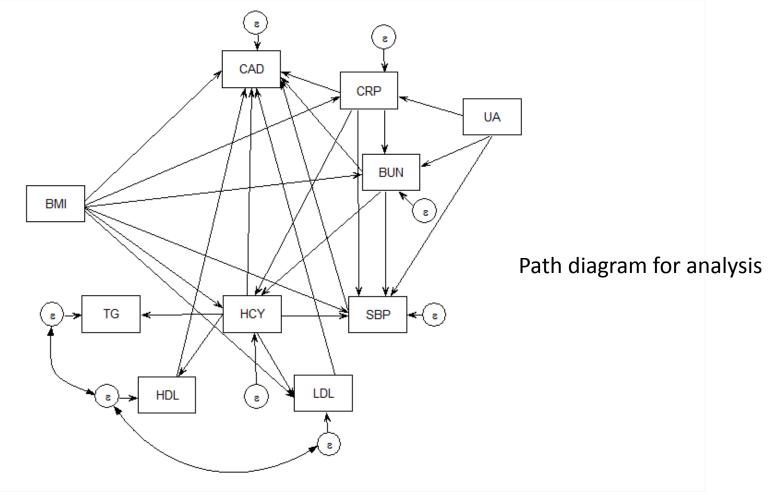
- Elderly Chinese population (76±7 years age)
- Case-control data: 460 individuals with (50%) and without (50%) hypertension
- Cross-sectional data: Individuals with (53%) and without (47%) CAD
- 1 binary variable
 - Coronary artery disease (CAD) status
- 9 continuous variables
 - Lipids (LDL, HDL-cholesterol, Triglycerides (TG))
 - Body mass index (BMI)
 - Systolic Blood pressure (SBP)
 - Homocysteine (HCY)
 - Kidney function (Blood urea nitrogen: BUN)
 - Inflammation (C-reactive protein (CRP))
 - Oxidative stress (Uric acid (UA))

Structural Equation Modelling (SEM)

- Allows estimation of
 - Underlying "latent" factors
 - Multiple regression models
 - Direction of causal pathways
 - Strength of causal pathways
 - Direct and indirect effects
 - Tests of Mediation
- Traditionally used by the Social Sciences
- Gaining acceptance within the Health Sciences

Research objectives

Obtain parameter estimates


- Determine the direct effect of HCY on CAD
- Determine **explained variance** (R²) of each variable
- Determine the indirect effects of HCY on CAD

Mediation

- Through which variables are the indirect effects mediated?
 - Blood pressure
- Are there indirect effects of other factors via HCY?
 - Insulin sensitivity
 - Inflammation
 - Oxidative stress
- Model fit
 - Does the proposed causal pathway model fit?
 - Is the model the same across genders?

Hypothesised causal pathway for CAD and risk factors

Software for SEM

- Software packages
 - STATA
 - Mplus
 - LISREL (Joreskog, 1986)
 - EQS (Bender, 1985)
 - AMOS (SPSS add-on)
 - R (libraries: sem and semPlot)
 - SmartPLS
- Analysis of binary outcomes available in
 - STATA (since version 13; 2013)
 - Mplus (since version 2; 2001)

SEM estimation with categorical outcomes

- ML estimation requires numerical integration for combination of
 - Categorical outcomes and
 - Continuous latent variables
 - Missing data
- Numerical integration available in
 - STATA
 - Mplus
- Mplus has 2 additional estimation options
 - Weighted least squares (WLS)
 - Bayesian

- Default method for categorical outcomes is means and variance adjusted weighted least squares
 - (Estimator=WLSMV)
 - Uses probit regression (CDF for CAD treated as a latent variable)
 - Computationally demanding
- ML estimation
 - (Estimator=ML)
 - Rectangular, Gauss-Hermite or Monte Carlo integration
 - With or without adaptive quadrature
- Bayes estimation

- GSEM
 - ML with numerical integration is default for GSEM
 - The **only** estimator option for categorical outcomes
- Integration methods
 - Mean-variance adaptive gauss hermite (mvaghermite) (the default)
 - Mcaghermite (computationally intensive but better convergence)
 - Ghermite
 - Laplace (less accurate but less computationally intensive)
- Technique (for VCE)
 - Observed information matrix (OIM)

gsem (CAD <- HCY CRP SBP LDL HDL BUN BMI, family(binomial) link(logit)) ///
(BUN <- BMI CRP UA) ///
(CRP <- BMI UA) ///
(SBP <- BUN HCY BMI UA CRP) ///
(HCY <- BMI BUN CRP) ///
(LDL <- BMI HCY) ///
(TG <- HCY) ///
(HDL <- HCY) ///
if sex==0, cov(e.TG*e.HDL e.HDL*e.LDL) nocapslatent ///</pre>

```
method(ml) ///
vce(oim) ///
intmethod(mvaghermite) ///
iterate(1001)
```


Mplus code (for ML)

VARIABLE:

Names are sex age HCY TG HDL LDL BUN CR UA CRP BS SBP DBP CAD BMI group; Missing are all (-9999); Usevariables are HCY TG HDL LDL BUN SBP CAD BMI CRP UA; Categorical is CAD; Useobservations are sex==0;

ANALYSIS:

estimator=ml; iter=200000; Algorithm=int; integration=GAUSSHERMITE; Adaptive=on;

MODEL:

CAD on BUN SBP HCY HDL LDL CRP BMI; BUN on BMI CRP UA; CRP on BMI UA; SBP on BUN HCY BMI UA CRP; HCY on BMI BUN CRP; LDL on BMI HCY; TG on HCY; HDL on HCY; TG with HDL; LDL with HDL;

OUTPUT:stdyx;tech1 tech2;modindices(3)

Model indirect:

CAD ind HCY; CAD ind BUN; CAD ind BMI; CAD ind SBP; CAD ind LDL; CAD ind HDL; CAD ind CRP; CAD ind UA; To obtain indirect effects on CAD with 95% Cl's

- Parameter estimates
 - Non-standardised
 - Standardised
- Model fit
 - Absolute fit (χ^2 for proposed model versus saturated model)
 - Relative fit (AIC/BIC)
- Test for group invariance of parameter estimates
 - i.e. can the same parameter estimates be used for different groups?
 - E.g. Males versus females, race
 - Typically uses
 - χ^2 difference testing of constrained and unconstrained models
 - Difference in -2 LL
- Estimate indirect effects

Non-standardised β 's

	β STATA GSEM (Logit coefficient)	β Mplus ML (Logit coefficient)	β Mplus WLSMV (Probit coefficient)	β Mplus Bayes (Probit coefficient)
Males				
CAD				
HCY	0.311±0.046	0.311±0.046	0.108±0.019	0.187±0.024
CRP	0.119±0.131	0.119±0.132	0.047±0.050	0.059±0.069
SBP	0.034±0.014	0.034±0.014	0.013±0.004	0.014±0.007
LDL	-0.28±0.299	-0.28±0.299	-0.048±0.094	-0.202±0.158
HDL	0.527±00.681	0.527±0.681	0.158±0.226	0.119±0.353
BUN	0.114±0.122	0.114±0.122	0.089±0.045	0.049±0.064
BMI	0.037±0.057	0.037±0.057	0.020±0.019	-0.001±0.029

Standardised β 's

	β STATA GSEM	β Mplus ML	β Mplus WLSMV	β Mplus Bayes
Males				
CAD				
HCY	N/A	0.62±0.08	0.58±0.08	0.68±0.07
CRP	N/A	0.07±0.07	0.07±0.08	0.06±0.07
SBP	N/A	0.20±0.07	0.21±0.07	0.15±0.07
LDL	N/A	-0.06±0.07	0.030±0.058	-0.08±0.06
HDL	N/A	0.05±0.06	0.04±0.06	0.02±0.06
BUN	N/A	0.07±0.07	0.15±0.08	0.05±0.07
BMI	N/A	0.04±0.07	0.07±0.06	-0.001±0.06

CAD as continuous - standardised β 's

Males	β STATA SEM	β Mplus ML	β Mplus Bayes
CAD			
НСҮ	0.65±0.06	0.64±0.05	0.63±0.05
CRP	0.07±0.05	0.07±0.05	0.07±0.05
SBP	0.11±0.04	0.11±0.05	0.11±0.05
LDL	-0.037±0.039	-0.032±0.04	-0.032±0.04
HDL	0.038±0.041	0.038±0.04	0.39±0.04
BUN	0.026±0.04	0.024±0.04	0.02±0.04
BMI	0.02±0.04	0.02±0.04	0.022±0.04
χ^2	49.2 (38df); p=0.11	48.8 (37df); p=0.09	
Satorra-Bentler χ^2	46.3 (38df); p=0.17	47.9 (37df); p=0.11	

Absolute fit (χ^2 test of model fit) with WLSMV

Value	32.717*
Degrees of Freedom	36
P-Value	0.6255
χ^2 Contribution From Each Group	
MALES	12.877
FEMALES	19.839

Relative Fit (AIC/BIC) with ML (single groups only)

Loglikelihood	H0 Value	-2567.236
Akaike (AIC)		5216.472
Bayesian (BIC)		5348.727
Sample-Size Adju	sted BIC	5218.866

Nested model comparisons

WLSMV: Use difftest option

SAVEDATA: difftest is mydiff.dat; ANALYSIS: difftest is mydiff.dat;

Chi-Square Test for Difference Testing Value 28.409 Degrees of Freedom 22 P-Value 0.1625

ML: Apply with and without model constraint option and compare -2LL e.g:

MODEL CONSTRAINT: 0 = b1;

Loglikelihood H0 Value -2567.854 Loglikelihood H0 Value -2567.236

Testing group invariance - Mplus

WLSMV χ^2 test of model fit

Unconstrained model

VARIABLE: Grouping is sex (0=males, 1=females) SAVEDATA: difftest is mydiff.dat;

Value	32.717*
Degrees of Freedom	36
P-Value	0.6255
χ^2 Contribution From	Each Group
MALES	12.877
FEMALES	19.839

Constrained model

ANALYSIS: estimator=wlsmv; iter=20000; difftest is mydiff.dat; MODEL: BUN on BMI(b1); etc.

Chi-Square Test for Difference Testing Value 28.409 Degrees of Freedom 22 P-Value 0.1625

MI: Mixture models

VARIABLE:

Categorical is CAD; classes=sex(2); knownclass= sex (sex=0, sex=1); ANALYSIS: type=mixture; estimator=ml; iter=20000;

algorithm=integration;

Unconstrained model

MODEL: %overall% Model code %sex#1% Model code %sex#2% Model code

Constrained Model

MODEL: %OVERALL% Model code

Number of Free Parameters 76 Loglikelihood H0 Value Number of Free Parameters 50 Loglikelihood H0 Value

-6589.617

-6572.265

Flinders

Flinders University Centre for Epidemiology and Biostatistics

di chi2(34.7, 26) .14339388

Richard Woodman

SEM using STATA and Mplus

Mplus versus STATA for categorical outcomes

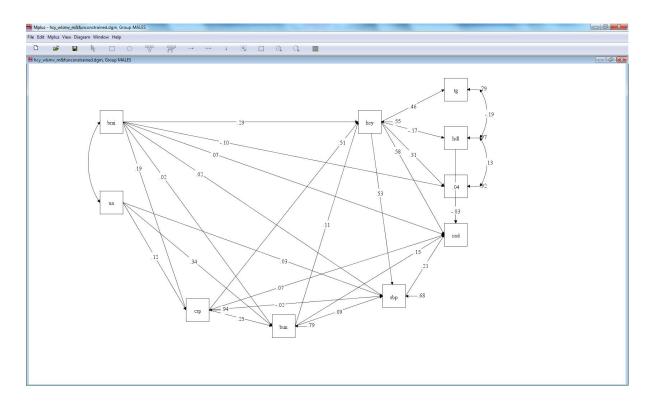
	Mplus (WLSMV)	Mplus (ML)	STATA (GSEM)
Estimates			
Non-standardised	\checkmark		\checkmark
Standardised	\checkmark		×
Model fit			
Absolute fit (χ^2 test of model fit)	\checkmark		×
Relative fit (AIC/BIC)	\checkmark		\checkmark
Nested models (χ^2 diff testing with LL)		✓	\checkmark
Test for group invariance			
with χ^2 difference testing	✓		×
with -2 x Log Likelihood difference testing		✓ (ML Mixture model)	×
Test of indirect effects	\checkmark		×
R ² for CAD	\checkmark	\checkmark	×

Summary of results

- Treating binary variables as continuous can produce quite biased results although substantive conclusions remain
- Mplus allows 3 estimation options versus 1 for STATA
 - WLSMV more accurate? (Psychological Methods, 17(3): 354-373)
- Mplus provides
 - tests of absolute fit
 - tests of indirect effects for ML
 - testing for group invariance using WLSMV (difftest)
 - Testing for group invariance using ML (mixture model)
 - standardised estimates for ML
 - R² estimates

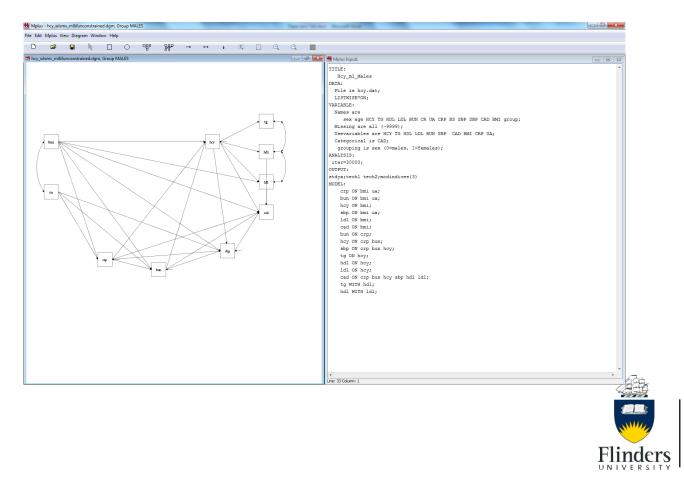
Step 1: Run from syntax file

olus - [hcy_wlsmv_M&Funconstrained.inp]	Reprint Tables - Monah Red	
ile <u>E</u> dit <u>V</u> iew <u>M</u> plus <u>P</u> lot <u>D</u> iagram <u>W</u> indow <u>H</u> elp		_ 8
2 🖬 % 🖻 🚭 🎹 🗵 🗠 🔤 🗠 🗠 🗠 🗠 🗠 🗠		
TLE:		
Hcy_ml_Males		
TA:		
File is hcy.dat; LISTWISE=ON;		
RIABLE:		
Names are		
sex age HCY TG HDL LDL BUN CR UA CRP BS SBP DBP CAD BMI group;		
Missing are all (-9999); Jsevariables are HCY TG HDL LDL BUN SBP CAD BMI CRP UA;		
Categorical is CAD;		
grouping is sex (0=males, 1=females);		
USEOBSERVATIONS ARE SEX==0;		
ALYSIS:		
estimator=wls;		
er=30000;		
EL:		
NUN ON BMI CRP UA; RP on BMI UA;		
BP on BUN HCY BMI UA CRP;		
AD on BUN SBP HCY HDL LDL CRP BMI;		
ICY on BMI BUN CRP;		
DL ON BMI HON CRP; DL ON BMI HCY;		
G on HCY;		
IDL on HCY;		
FG with HDL; LDL with HDL; TAD with TG#0;		
vedata:		
difftest is mydiff2.dat;		
<pre>PUT:stdyx;tech1 tech2;modindices(3)</pre>		
el indirect:		
CAD ind HCY;		
CAD ind BUN;		
CAD ind BMI;		
CAD ind SBP;		
CAD ind LDL; CAD ind HDL;		
CAD ind CRP;		
CAD ind UA;		

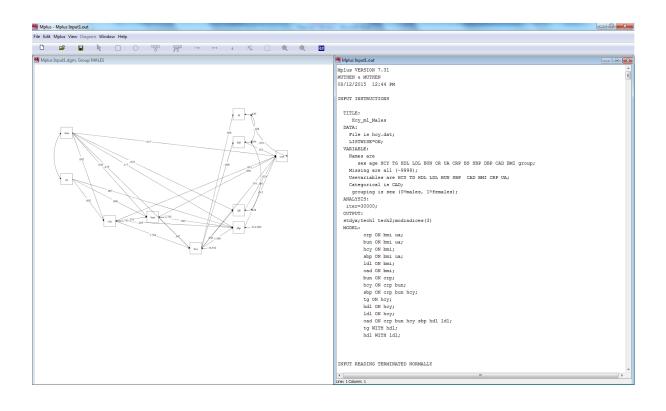


Step 2: In the output file, click: Diagram - View diagram

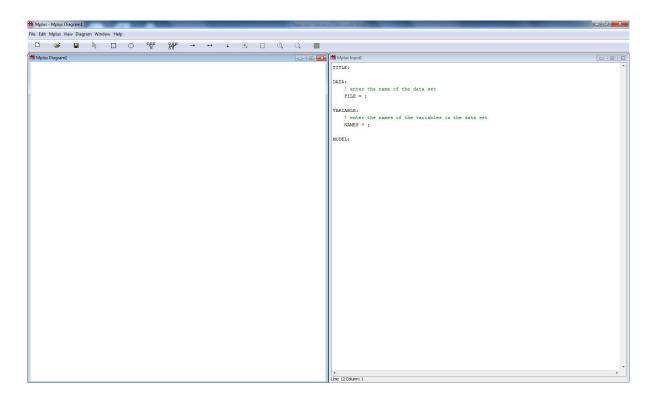
lus - [hcy_wlsmv_m&funconstrained.out]	Page and Talk days - Marcall Red	
le Edit View Mplus Plot Diagram Window Help		- 1
: 🖶 🖇 📾 🖶 🖂 🖂 🗠 🗠 🗁 🗠 🗁 🗁 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘		
us VERSION 7.31		
HEN & MUTHEN		
12/2015 12:48 PM		
UT INSTRUCTIONS		
UT INSTRUCTIONS		
ITLE:		
Hcy_ml_Males		
ATA:		
File is hoy.dat;		
LISTWISE=ON;		
ARIABLE:		
Names are		
sex age HCY TG HDL LDL BUN CR UA CRP BS SBP DBP CAD BMI group;		
Missing are all (-9999); Usevariables are HCY TG HDL LDL BUN SBP CAD BMI CRP UA;		
Usevariables are HCY TG HDL LDL BUN SBP CAD BMI CRP UA; Categorical is CAD;		
<pre>categorical is CAD; grouping is sex (0=males, 1=females);</pre>		
grouping is sex (u-males, 1=remales); ! USEOBSERVATIONS ARE SEX==0;		
SEOBJERVATIONS ARE JEA		
NALYSIS:		
estimator=wls;		
iter=30000;		
ODEL:		
BUN on BMI CRP UA;		
CRP on BMI UA;		
SBP on BUN HCY BMI UA CRP;		
CAD on BUN SBP HCY HDL LDL CRP BMI;		
HCY on BMI BUN CRP:		
LDL on BMI HCY;		
TG on HCY;		
HDL on HCY;		
TG with HDL; LDL with HDL;		
CAD with TGRO;		
avedata:		
! difftest is mvdiff2.dat;		
JTFUT:stdvx;tech1 tech2;modindices(3)		
odel indirect:		
CAD ind HCY;		
CAD ind BUN;		
CAD ind BMI; CAD ind SBP;		
CAD ind SBP; CAD ind LDL;		
CAD ind LDL; CAD ind HDL;		
CAD ind HDL; CAD ind CRP;		
CAD ind UA;		
UT READING TERMINATED NORMALLY		
III.		



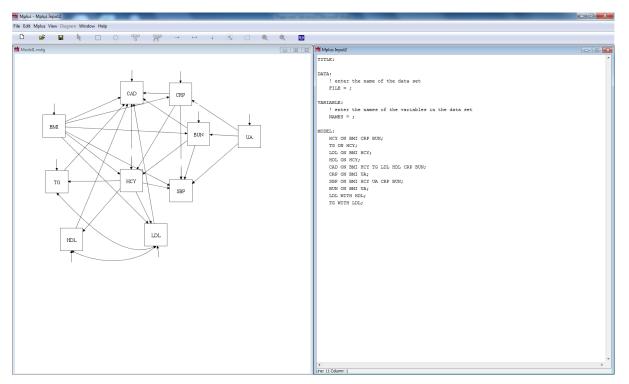
Step 3: This brings up the model with the estimates (.dgm file)



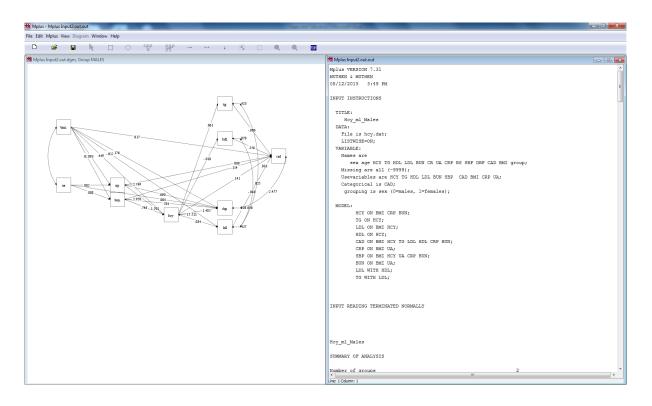
Step 4: Go to Input mode (click on Diagram-Input), and either alter the syntax in the newly written Input file, or alter the path diagram (.mdg file) (this will automatically alter the syntax). Save input file and click "Run"

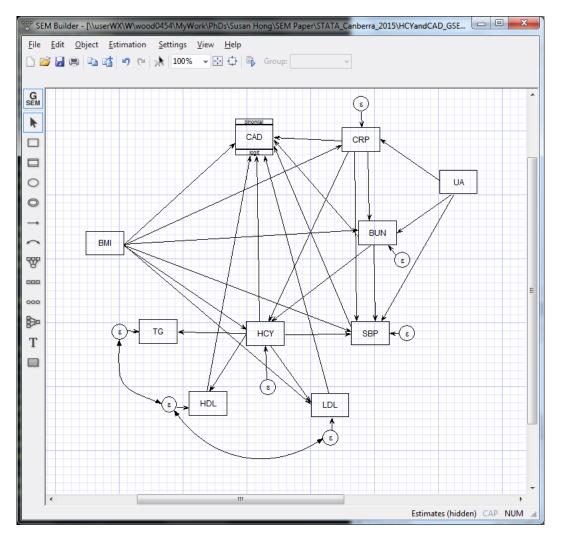

Step 5: View output and new path diagram

Diagrammer – Mplus: From diagram to syntax


Step 1: Open up Diagrammer from within Mplus Editor (Diagram – Open Diagrammer)

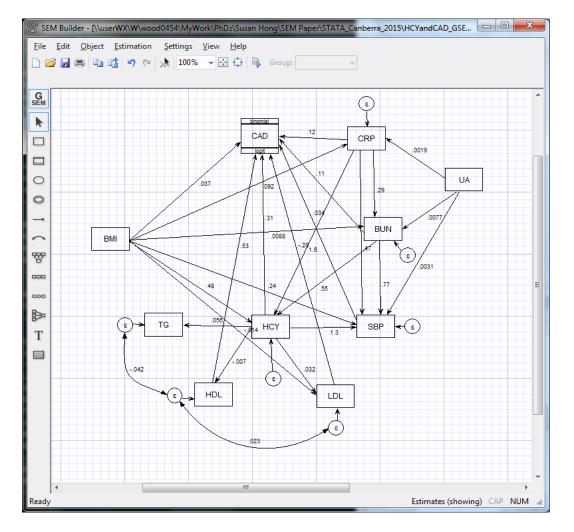
Diagrammer – Mplus: From diagram to syntax


Step 2: Create path diagram. The model part of the syntax will appear on the RH side but not other aspects of the syntax. The path diagram is a .mdg file. The syntax file is a .inp file.


Diagrammer – Mplus: From diagram to syntax

Step 3: Save the Input file and click Run. This will produce a path diagram (.dgm file) with estimates and some output. This is the equivalent of step 5 for option 1

Step 1: Draw diagram



Step 2: Select options and click OK

🔳 GSE	M estimati	on options						
if/in	Weights	SE/Robust	Reporting	Integration	Maximization	Advanced		
Res	trict observa	ations						
	expression)							
sex	(==0						Create	
	Use a range rom:	e of observatio	ns 460 🛓					
06					C	ОК	Cancel	

Step 3: View results and Output

Step 4: Copy syntax from Output window

. gsem (BMI -> HCY,) (BMI -> CAD, family(binomial) link(logit)) (BMI -> CRP,) (BMI -> SBP,) (BMI -> LDL,) (BMI -> BUN,) > (HCY -> TG,) (HCY -> CAD, family(binomial) link(logit)) (HCY -> SBP,) (HCY -> LDL,) (HCY -> HDL,) (CRP -> HCY,) (CRP -> > CAD, family(binomial) link(logit)) (CRP -> SBP,) (CRP -> BUN,) (SBP -> CAD, family(binomial) link(logit)) (LDL -> CAD, > family(binomial) link(logit)) (HDL -> CAD, family(binomial) link(logit)) (UA -> CRP,) (UA -> SBP,) (UA -> BUN,) (BUN -> > HCY,) (BUN -> CAD, family(binomial) link(logit)) (BUN -> SBP,) if sex==0, cov(e.TG*e.HDL e.HDL*e.LDL) nocapslatent

- PROS
 - Simple to create
 - observed variables, factors, paths, variable names
 - Path diagram (.stem) files can be
 - saved and modified
 - converted to other file forms (.pdf, .tiff etc.)
 - Additional estimation options easy to apply via a GUI
 - Writes out the corresponding syntax when run
- CONS
 - Some aspects of drawing are a bit tricky
 - Resizing
 - Variances and co-variance arrows are hard work to get just right
 - Cannot produce a diagram from syntax

- PROS
 - Writes syntax as a diagram is drawn
 - Provides a diagram from syntax
- CONS
 - Automatic xxx.dmg output files often ugly
 - Dealing with 2 rather than 1 file type
 - .mdg (the hand drawn diagram file from scratch)
 - .dmg (the automatically produced diagram from syntax estimation)

Diagrammer comparison

	Mplus	STATA
Run a diagram to produce syntax	\checkmark	$\checkmark\checkmark$
Run syntax to produce a diagram	\checkmark	×
Run syntax to produce a nice diagram	×	×
Diagrams simple to create	\checkmark	$\checkmark\checkmark$
Diagrams convert to .pdf, .tiff	\checkmark	\checkmark
Wizard option to improve appearance (available in some packages e.g. AMOS)	*	×

Overall Summary of results

- PRO's for Mplus
 - 3 estimation options (ML, WLS, Bayes)
 - Provides
 - Tests of model fit (WLS estimator)
 - Indirect effects (ML and WLS)
 - Standardised estimates (ML and WLS)
 - Testing for group invariance (ML and WLS)
 - R² estimate
- PRO's for STATA
 - Only one estimation option to choose from!
 - Better path diagrammer
 - Diagrams easier to draw
 - For saving diagrams pdf's **and** tiff's
 - For obtaining the syntax from the diagram
 - HELP menu

Dr Susan Hong (PhD student), School of Public Health, Central South University, China

Prof Shuiyuan Xiao (PhD supervisor), Institute of Gerontology, Hunan Geriatric Hospital, China

Prof Arduino A Mangoni: Clinical Pharmacology, Flinders University